$C \sim 1.1$	- 1/h
Name $\supset C$	ansky
Mr. Schlansky	

Date	
Algebra II	

Advanced Trig Ratios Regents Practice

3)
$$-\frac{5}{4}$$
 SinQ= $\frac{5}{4}$
4) $\frac{5}{4}$ SinQ= $\frac{1}{4}$

2. If the terminal side of angle θ , in standard position, passes through point (=4,3), what is the numerical value of sin 8?

$$3)-\frac{3}{5}$$

$$4)-\frac{4}{5}$$

$$SnQ = \frac{3}{5}$$

3 A circle centered at the origin has a radius of 10 units. The terminal side of an angle, θ , intercepts the circle in Quadrant II at point C. The y-coordinate of point C is 8. What is the

3)
$$\frac{3}{5}$$

$$\cos Q = \frac{6}{10}$$

4. Given $\cos \theta = \frac{7}{25}$, where θ is an angle in standard position terminating in quadrant IV, and $\sin^2 \theta + \cos^2 \theta = 1$, what is the value of $\tan \theta$?

$$\frac{1}{25}$$

$$2 - \frac{25}{7}$$

3)
$$\frac{24}{25}$$
 $4400 = 24$

5. Given that $\sin^2 \theta + \cos^2 \theta = 1$ and $\sin \theta = \frac{0}{11} \frac{\sqrt{2}}{5}$, what is a possible value of $\cos \theta$?

3)
$$\frac{3\sqrt{3}}{5}$$

4)
$$\frac{\sqrt{35}}{5}$$

7. An angle, θ , is in standard position and its terminal side passes through the point (2, -1). Find the exact value of $\sin \theta$.

osition and its terminal side passes through the point (2, -1)
$$a^{2}+b^{2}=C^{2}$$

$$3^{2}+|^{2}=C^{2}$$

$$4+|^{2}=C^{2}$$

$$4+|^{2}=C^{2}$$

$$5n0=\frac{1}{15}$$

$$5=\frac{1}{15}$$

$$5=\frac{1}{15}$$

8. A circle centered at the origin has a radius of 4 units. The terminal side of an angle, θ , intercepts the circle in Quadrant III at point P. The x-coordinate of point P is 2. What is the

9. The terminal side of θ , an angle in standard position, intersects the unit circle at $P\left(-\frac{1}{3}\frac{A}{14}, \frac{\sqrt{8}}{3}\right) \stackrel{C}{\leftarrow} 14$ What is the value of $\sec \theta$?

2)
$$-\frac{3\sqrt{8}}{8}$$

3)
$$-\frac{1}{3}$$

$$\frac{3}{\sqrt{8}}$$

$$If \cos Q = -\frac{1}{3}$$

$$SecQ = -3$$

10. Point $\left(t, \frac{1}{7}\right)$ is located in the second quadrant on the unit circle. Determine the exact value

of t.

Since $\frac{4}{7}$ $\frac{0}{4}$ A is asking $\cos 0 = \frac{4}{7}$ For $\cos 0 = \frac{4}{7}$ $\cos 0 = \frac{4}{7}$ $\cos 0 = \frac{4}{7}$

$$a^{2} + 4^{2} = 7^{2}$$
 $a^{2} + 49 = 49$
 $-46 - 16$
 $5a^{2} = 33$