To determine if a proportion is correct

Look at the letters vertically and horizontally One direction, the letters should correspond Second direction, the letters should be in the same triangle *It does not matter which direction does which

1. As shown in the diagram below, \overline{AB} and \overline{CD} intersect at E, and $\overline{AC} \parallel \overline{BD}$. Given $\triangle AEC \sim \triangle BED$, which equation is true?

3)
$$\frac{EC}{AE} = \frac{BE}{ED}$$

4)
$$\frac{ED}{EC} = \frac{AC}{BD}$$

2. In the diagram below, $\Delta QRX \sim \Delta TUV$. Which of the following statements is *not* true?

1)
$$\frac{\overline{QR}}{\overline{TU}} = \frac{\overline{QX}}{\overline{TV}}$$

$$2) \frac{\angle X}{\overline{\angle V}} = \frac{\angle Q}{\angle T}$$

$$\begin{array}{c|c}
\hline
10 & TV \\
\hline
RX & VT \\
\hline
UV & XQ
\end{array}$$

4)
$$\frac{\overline{QX}}{\overline{QR}} = \frac{\overline{TV}}{\overline{TU}}$$

3. Given that $\Delta DEF \sim \Delta HIJ$, which is the correct statement about their corresponding

3)
$$\frac{\overline{DE}}{\overline{HJ}} = \frac{\overline{EF}}{\overline{HI}}$$

2)
$$\frac{EF}{HI} = \frac{II}{DF}$$

4)
$$\frac{\overline{DE}}{\overline{JI}} = \frac{\overline{EF}}{\overline{HJ}}$$

4. In the diagram below, $\triangle ABC \sim \triangle RST$.

Which statement is not true?

- $\angle A \cong \angle R$

4)
$$\angle B \cong \angle S$$

- 5. Scalene triangle ABC is similar to triangle DEF. Which statement is false?
- 1) $\frac{\overline{AB}}{\overline{BC}} = \frac{\overline{DE}}{\overline{EE}}$
 - $\frac{BC}{AC} = \frac{EF}{BC}$

- $\begin{array}{ccc}
 DF & EF \\
 3) & \angle ACB \cong \angle DFE
 \end{array}$
- 4D ∠ABC ≅ ∠EDF
- 6. Given right triangle ABC with a right angle at C, $m \angle B = 61^{\circ}$. Given right triangle RST with a right angle at T, $m \angle R = 29^{\circ}$.

 $\underbrace{1}_{RS} = \underbrace{RT}_{AC}$

 $\frac{\overline{3)}}{ST} = \frac{AC}{RT}$

 $\frac{BC}{ST} = \frac{AE}{RS}$

4) $\frac{AB}{AC} = \frac{RS}{RT}$

7. In the diagram below, $\triangle DEF$ is the image of $\triangle ABC$ after a clockwise rotation of 180° and a dilation where AB = 3, BC = 5.5, AC = 4.5, DE = 6, FD = 9, and EF = 11.

Which relationship must always be true?

1) $\frac{m\angle A}{m\angle D} = \frac{1}{2}$

andes are always in

2) $\frac{m\angle C}{m\angle F} = \frac{2}{1}$

3) $m \angle A \qquad m \angle F$ $m \angle C \qquad m \angle D$

- $\begin{array}{c}
 \text{m/B} \\
 \text{m/B} \\
 \text{m/F}
 \end{array}$
- 8. In the diagram below of isosceles triangle AHE with the vertex angle at H, $\overline{CB} \perp \overline{AE}$ and $\overline{FD} \perp \overline{AE}$.

Which statement is always true?

- 1) $\frac{AH}{AG} = \frac{EH}{BE}$
 - AC AB EN ED
- DE B
- 3) $\frac{AB}{ED} = \frac{CB}{FE}$
- $\frac{AD}{AB} = \frac{BE}{DE}$

