Name	Date
Mr. Schlansky	Geometry

Quadrilateral Properties Review Sheet

- 1. Which quadrilateral has diagonals that always bisect its angles and also bisect each other?
- 1) rhombus
- 2) rectangle
- 3) parallelogram
- 4) isosceles trapezoid
- 2. Given three distinct quadrilaterals, a square, a rectangle, and a rhombus, which quadrilaterals must have perpendicular diagonals?
- 1) the rhombus, only
- 2) the rectangle and the square
- 3) the rhombus and the square
- 4) the rectangle, the rhombus, and the square
- 3. A parallelogram must be a rhombus when its
- 1) Diagonals are congruent.
- 2) Opposite sides are parallel.
- 3) Diagonals are perpendicular.
- 4) Opposite angles are congruent.
- 4. A parallelogram must be a rectangle when its
- 1) diagonals are perpendicular
- 2) diagonals are congruent
- 3) opposite sides are parallel
- 4) opposite sides are congruent
- 5. Parallelogram BETH, with diagonals \overline{BT} and \overline{HE} , is drawn below. What additional information is sufficient to prove that BETH is a rectangle?

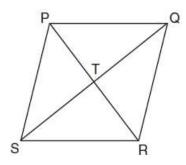
1)
$$\overline{BT} \perp \overline{HE}$$

2)
$$\overline{BE} \parallel \overline{HT}$$

3)
$$\overline{BT} \cong \overline{HB}$$

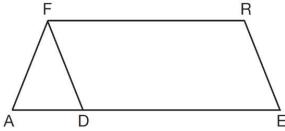
4)
$$\overline{BE} \cong \overline{ET}$$

6. Parallelogram EATK has diagonals \overline{ET} and \overline{AK} . Which information is always sufficient to prove EATK is a rhombus?

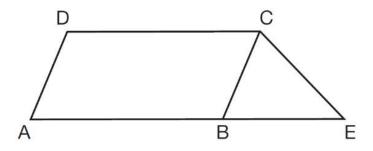

1)
$$\overline{EA} \perp \overline{AT}$$

$$3) \quad \overline{ET} \cong \overline{AK}$$

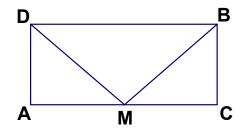
2)
$$\overline{EA} \cong \overline{AT}$$


4)
$$\overline{ET} \cong \overline{AT}$$

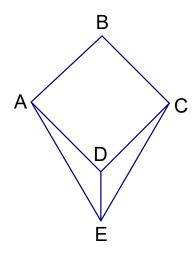
7. In the diagram of rhombus PQRS below, the diagonals \overline{PR} and \overline{QS} intersect at point T, PR = 16, and QS = 30. Determine and state the perimeter of PQRS.



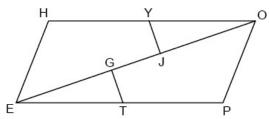
8. A rhombus has diagonals that measure 6 and 8. Find the perimeter of the rhombus.


9. In the diagram of parallelogram FRED shown below, \overline{ED} is extended to A, and \overline{AF} is drawn such that $\overline{AF} \cong \overline{DF}$. If $m\angle R = 124^\circ$, what is $m\angle AFD$?

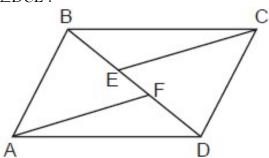
10. In the diagram below, ABCD is a parallelogram, \overline{AB} is extended through B to E, and \overline{CE} is drawn. If $\overline{CE} \cong \overline{BE}$ and $m\angle D = 112^\circ$, what is $m\angle E$?



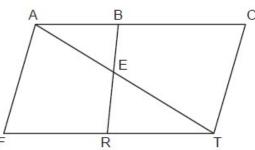
11. Given: ABCD is a rectangle, M is the midpoint of \overline{AC} Prove: $\overline{DM} \cong \overline{BM}$



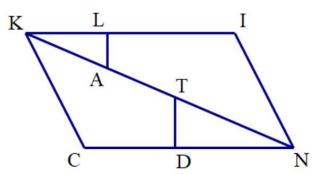
12. Given: ABCD is a rhombus, $\overline{AE} \cong \overline{CE}$


Prove: $\angle ADE \cong \angle CDE$

13. In quadrilateral HOPE below, $\overline{EH} \cong \overline{OP}$, $\overline{EP} \cong \overline{OH}$, $\overline{EJ} \cong \overline{OG}$, and \overline{TG} and \overline{YJ} are perpendicular to diagonal \overline{EO} at points G and J, respectively. Prove that $\overline{TG} \cong \overline{YJ}$.



14. In the diagram of quadrilateral ABCD below, $\overline{AB} \cong \overline{CD}$, and $\overline{AB} \parallel \overline{CD}$. Segments CE and AF are drawn to diagonal \overline{BD} such that $\overline{BE} \cong \overline{DF}$. Prove: $\angle BAF \cong \angle DCE$.



15. In the diagram below of quadrilateral FACT, \overline{BR} intersects diagonal \overline{AT} at E, $\overline{AF} \parallel \overline{CT}$, and

 $\overline{AF} \cong \overline{CT}$. Prove (AB)(TE) = (AE)(TR)

16. Given: $\overline{KC} \parallel \overline{IN}$, $\overline{KC} \cong \overline{IN}$, $\overline{AL} \perp \overline{KI}$, $\overline{TD} \perp \overline{CN}$. Prove $\overline{KL} \bullet \overline{NT} = \overline{DN} \bullet \overline{KA}$

