Name _____ Mr. Schlansky Date _____ Geometry

Special Angles in Circles

1. In the diagram of circle A shown below, chords \overline{CD} and \overline{EF} intersect at G, and chords \overline{CE} and \overline{FD} are drawn.

Which statement is not always true?

- 1) $\overline{CG} \cong \overline{FG}$
- 2) $\angle CEG \cong \angle FDG$
- 3) $\frac{CE}{EG} = \frac{FD}{DG}$
- 4) $\Delta CEG \sim \Delta FDG$
- 2. In circle O shown below, diameter \overline{AC} is perpendicular to \overline{CD} at point C, and chords $\overline{AB}, \overline{BC}, \overline{AE}, \text{ and } \overline{CE}$ are drawn.

Which statement is not always true?

- 1) $\angle ACB \cong \angle BCD$
- 2) $\angle ABC \cong \angle ACD$
- 3) $\angle BAC \cong \angle DCB$
- 4) $\angle CBA \cong \angle AEC$

3. In the diagram below, \overline{DC} , \overline{AC} , \overline{DOB} , \overline{CB} , and \overline{AB} are chords of circle O, \overleftarrow{FDE} is tangent at point D, and radius \overline{AO} is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

Which angle is Sam referring to?

- 1) ∠*AOB*
- 2) $\angle BAC$
- 3) $\angle DCB$
- 4) $\angle FDB$
- 4. In circle O shown below, \overline{AE} is a diameter, \overline{SB} is a tangent, and chord \overline{AR} and \overline{RE} are drawn.

Which of the following statements is true?1) $\angle EAR \cong \angle RAB$ 3) $\angle SAR \cong \angle BAE$ 2) $\angle REA \cong \angle SAE$ 4) $\angle ERA \cong \angle BAE$

5. In circle O shown below, \overline{BR} is a diameter and chords \overline{BU} , \overline{IU} , and \overline{IR} are drawn.

Which of the following statements is *not* true? 1) $\langle PPI | z \rangle \langle PPI \rangle = 2 \rangle \langle PPI | z \rangle \langle PPI \rangle \langle$

1) $\angle BUI \cong \angle BRI$	3) $\angle UBT \cong \angle BRI$
2) $\angle ITR \cong \angle BTU$	4) $\angle RBU \cong \angle RIU$

6. In circle O shown below, \overline{GM} is a diameter and chords \overline{EM} , \overline{OG} , \overline{EG} and \overline{EO} are drawn.

Which of the following statements is *not* true?1) $\angle MEO \cong \angle OGM$ 3) $\triangle MGR \cong \triangle EOR$ 2) $\angle GRM \cong \angle ORE$ 4) $\angle GEM$ is a right angle

7. In circle *B* shown below, \overline{TW} is a diameter, tangents \overline{EW} and \overline{ES} are drawn and chords \overline{WS} and \overline{TS} are drawn.

8. In circle *M* below, diameter \overline{AC} , chords \overline{AB} and \overline{BC} , and radius \overline{MB} are drawn.

Which statement is not true?

- 1) $\triangle ABC$ is a right triangle.
- 2) $\triangle ABM$ is isosceles.
- 3) $\widehat{mBC} = m \angle BMC$

$$^{(4)} \quad \widehat{\mathsf{mAB}} = \frac{1}{2} \, \mathbb{m} \angle ACB$$

9. In the diagram below, \overline{BC} is the diameter of circle A.

Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?

- 1) $\triangle BCD$ is a right triangle.
- 2) $\triangle BCD$ is an isosceles triangle.
- 3) $\triangle BAD$ and $\triangle CBD$ are similar triangles.
- 4) $\triangle BAD$ and $\triangle CAD$ are congruent triangles.

