

a)
$$f(x+2)$$
 left \tilde{J}

b)
$$f(x)+2$$
 up \supseteq

c)
$$f(x-2)$$
 fight 2

d)
$$f(x)-2$$
 down \Rightarrow

Match the following equations with their graphs:

a)
$$f(x+2)$$
 left \Im

b)
$$f(x)+2 \ \bigcirc \bigcirc$$

c)
$$f(x-2)$$
 right $\frac{1}{2}$

d)
$$f(x)-2$$
 down \int

	3. Which transformation of $y=2^x$ results in the function $y=2^x-2$?
	1) Up two units 3) Right two units 3 down 2
	2) Down two units 4) Left 2 Units
	4. Which transformation of $y = 2^x$ results in the function $y = 2^{x-2}$ 1) Up two units 3) Right two units
	1) Up two units
	2) Down two units 4) Left 2 Units
	5. The function $f(x) = \sqrt{x}$. Which function represents a shift of the graph left 3 units?
	1) $f(x-3) = \sqrt{x-3}$ 3) $f(x)+3 = \sqrt{x}+3$ add to just the x
	$(2) f(x+3) = \sqrt{x+3}$ 4) $f(x)-3 = \sqrt{x}-3$
. ($\frac{\partial \mathcal{L}}{\partial x} = \sqrt{x} + 3$
	6. Joey's math class is studying the basic quadratic function, $f(x) = x^2$. Each student is supposed
	to make two new functions by adding or subtracting a constant to the function. Joey chooses the
	functions $g(x) = x^2 - 5$ and $h(x) = x^2 + 2$. What transformations would map $f(x)$ to $g(x)$ and
	f(x) to $h(x)$?
	1) shift left 5, shift right 2 3) shift up 5, shift down 2
	2) shift right 5, shift left 2 \checkmark A) shift down 5, shift up 2
	down 5
	7. If $g(x) = f(x-4) + 2$, how is the graph of $f(x)$ translated to form the graph of $g(x)$?
	right 4 UP >
	8. If $h(x) = f(x+1) - 3$, how is the graph of $f(x)$ translated to form the graph of $g(x)$?
	left down 3
	9. How is the parent function transformed to create $f(x) = x+3 - 2$?
	· ·
	loft 3 down 2
	$\mu \cap \mathcal{L}$
	10. How is the parent function transformed to create $f(x) = (x-4)^2 + 3$?
	· · · · · · · · · · · · · · · · · · ·
	<u> </u>

11. The graph to the right represents f(x). Match the following with their graphs:

a) Which graph represents f(-x)-) (effect y

b) Which graph represents -f(x)-) (effect y

12. The graph to the right represents g(x).

Match the following with their graphs:

a) Which graph represents g(-x) (that y)

b) Which graph represents -g(x) (which y)

13. The accompanying graph represents the equation y = f(x).

Which graph represents g(x), if g(x) = -f(x)?

14. The graph below represents f(x).

reflect X

Which graph best represents f(-x)?

15. Consider the function y = h(x), defined by the graph to the right. Which equation could be used to represent the graph shown below?

$$y = -h(x)$$
4) $y = h(-x)$

$$\int V = h(-x)$$

