Name _____ Mr. Schlansky Date _____ Algebra II

Evaluating Recursive Sequences

1. Find a_4 of the sequence $a_n = 2a_{n-1} + 3$ where $a_1 = 1$.

2. Find a_5 of the sequence $a_n = 4a_{n-1} - 2$ where $a_2 = -3$.

3. Find
$$a_7$$
 sequence $\frac{a_4 = -2}{a_n = -3a_{n-1} + 4}$

4. If
$$a_n = \frac{a_{n-1}}{2} + 2$$
 and $a_2 = 16$, find a_5

5. If $a_n = (a_{n-1})^2 - 4$ and $a_4 = 2$, find a_7

- 6. Find the first four terms of the recursive sequence defined below. $a_1 = -3$
- $\alpha_n = \alpha_{(n-1)} n$

7. Find the 8th term for the sequence where $a_n = 5a_{n-1} + 2n$ where $a_5 = 3$

8. A sequence is defined recursively by $a_1 = 16$ and $a_n = a_{n-1} - 4n$. Find a_4

9. The recursive formula to describe a sequence is shown below.

State the first four terms of this sequence. Can this sequence be represented using an explicit geometric formula? Justify your answer.

$$a_1 = 3$$

 $\alpha_n = 1 + 2\alpha_{n-1}$

10. What is the fourth term of the sequence defined by $a_1 = 3xy^5$

$$a_n = \left(\frac{2x}{y}\right)a_{n-1}?$$

- 1) $12x^3y^3$
- 2) $24x^2y^4$
- 3) $24x^4y^2$
- 4) $48x^5y$