5. If the terminal side of angle θ , in standard position, passes through point (-4, 3), what is the numerical value of $\sin \theta$?

 $\frac{3}{5}$ 1) 2) $\frac{4}{5}$ 3) $-\frac{3}{5}$ 4) $-\frac{4}{5}$

6. A circle centered at the origin has a radius of 10 units. The terminal side of an angle, θ , intercepts the circle in Quadrant II at point C. The y-coordinate of point C is 8. What is the value of $\cos \theta$?

 $\begin{array}{c} 1) & -\frac{3}{5} \\ 2) & -\frac{3}{4} \\ 3) & \frac{3}{5} \\ 4) & \frac{4}{5} \end{array}$

7. A circle centered at the origin has a radius of 4 units. The terminal side of an angle, θ , intercepts the circle in Quadrant III at point P. The x-coordinate of point P is 2. What is the value of $\cos \theta$?

8. If the terminal side of an angle is point $(-\sqrt{11}, 5)$, what is the secant of this angle?

Name _____ Mr. Schlansky Date _____ Algebra II

Pythagorean Identity

1. Using the identity $\sin^2 \theta + \cos^2 \theta = 1$, find the six trigonometric values if $\sin \theta = .4$ and θ is in Quadrant I. Round all values to the nearest hundredth.

a) $\sin \theta =$ b) $\cos \theta =$ c) $\tan \theta =$

```
d) \csc \theta = e) \sec \theta = f) \cot \theta =
```

- 2. Using the identity $\sin^2 \theta + \cos^2 \theta = 1$, find the six trigonometric values if $\cos \theta = -.2$ and θ is in Quadrant III. Round all values to the nearest hundredth.
 - a) $\sin \theta =$ b) $\cos \theta =$ c) $\tan \theta =$

d) $\csc \theta =$ e) $\sec \theta =$ f) $\cot \theta =$