

Date _ Geometry

must be a dilation

Transformations Review Sheet

- 1. If $\triangle A^{\dagger}B^{\dagger}C^{\dagger}$ is the image of $\triangle ABC$, under which transformation will the triangles *not* be congruent?

1) reflection over the *x*-axis
2) translation to the left 5 and down 4

3) dilation centered at the origin with scale factor 2
4) rotation of 270° counterclockwise about the origin

be a dilation

- 2. Under which transformation would $\triangle A^{\dagger}B^{\dagger}C^{\dagger}$, the image of $\triangle ABC$, not be congruent to $\triangle ABC$?
- 1) reflection through the point (2,-1)
- 2) rotation of 90° clockwise about the origin
- 3) translation of 3 units right and 2 units down
- 4) dilation with a scale factor of 2 centered at the origin

3. What is the image of ΔLMN with vertices L(2,-3), M(5,1) and N(7,3) after a translation 2 units to the left and 4 units up? Cant

4. Graph the image of quadrilateral ADEF with vertices A(4,-1), D(8,-2), E(6,3), and F(2,7) after a translation 5 units to the left?

5. In the diagram below, $\triangle ABC$ is graphed. Graph and state the coordinates of the image of $\triangle ABC$ after a reflection through (2.3) and label it $\triangle A'B'C'$

6. Triangle RST is graphed on the set of axes below. Graph the image of ΔRST after a point reflection through (0,2) and label it $\Delta R'S'T'$.

7. On the grid below, graph and label triangle ABC with vertices A(3,1), B(0,4), and C(-5,3). On the same grid, graph and label triangle A'B'C', the image of ABC after a reflection over y=-1. Count to what you're labeling over in one direction.

8. Triangle ABC has coordinates A(2,1), B(6,1), C(5,3). What is the image of this triangle after a reflection over the line x=4. Graph both the image and the pre image.

9. Triangle A'B'C' is the image of triangle ABC after a translation of 2 units to the right and 3 units up. Is triangle ABC congruent to triangle A'B'C'? Explain why.

Yest A translation is a rigid motion. A rigid motion preserves size and angle Measure producing a congruent Figure.

10. After a reflection over a line, $\Delta A'B'C'$ is the image of ΔABC . Explain why triangle ABC is congruent to triangle $\Delta A'B'C'$.

A reflection is a rigid motion. A rigid motion preserves size and angle measure producing a congruent figure

11. After a counterclockwise rotation about point X, scalene triangle ABC maps onto $\triangle RST$, as shown in the diagram below.

Which statement must be true?

$$AP \angle A \cong \angle R$$

$$\begin{array}{ccc}
\hline
2) & \angle A \cong \angle S \\
\hline
3) & \overline{CB} \cong \overline{TR}
\end{array}$$

3)
$$\overline{CB} \cong \overline{TR}$$

4)
$$\overline{CA} \cong \overline{TS}$$

12. In the diagram below, a sequence of rigid motions maps ABCD onto JKLM.

Which of the following statements must be true?

- 3) $\angle L \cong \angle B$
- 3) $\overline{JK} \cong \overline{AC}$
- A) \(\(\alpha \) \(\alpha \) \(\alpha \)
- 4) $\overline{JM} \cong \overline{AB}$

13. Which of the following sequences of rigid motions would map ΔGIA onto ΔJET ?

1) point reflection through (0.5,0.5) followed by a translation

11 right and 1 down

- 2) reflection over the y-axis followed by a translation right 1 and down 1
- 3) rotation of 90 degrees clockwise centered at the origin followed by a translation right 1 and up 1
- 4) reflection over x=1 followed by a reflection over

the x-axis

14. Identify which sequence of transformations could map pentagon ABCDE onto pentagon A"B"C"D"E", as shown below.

must be a

Single line reflection

(1) dilation followed by a rotation

- 2) translation followed by a rotation
 - ine reflection followed by a translation
 - 4) line reflection followed by a line reflection

double reflection

15. On the set of axes below, $\triangle ABC \cong \triangle DEF$. Describe a sequence of rigid motions that maps $\triangle ABC$ onto $\triangle DEF$.

Same orientation rotation

followed by a translation 6 units right and × 2 units down.

16. On the set of axes below, pentagon *ABCDE* is congruent to *A"B"C"D"E"*. Describe a sequence of rigid motions that maps pentagon *ABCDE* onto *A"B"C"D"E"*.

Potate ABCDE 90° Counter-clockwise Centered at Afollowed by a translation 4 left and 7 down.

17. Quadrilateral *DEAR* and its image, quadrilateral *D'E'A'R'*, are graphed on the set of axes below. Describe a sequence of transformations that maps quadrilateral DEAR onto quadrilateral

D'E'A'R'.

opposite orientation
reflection Reflect DEAR over the
y-axis followed by a translation
2 right and 7 docon.

18. Quadrilaterals BIKE and GOLF are graphed on the set of axes below. Describe a sequence of transformations that maps quadrilateral BIKE onto quadrilateral GOLF.

opposite orientation feffect BIKE over refliction the 9-axis fallowed by the g-axis followed by a translation 5 units UP.

line of leflecton=line of symmetry center of rotation = center of shape

19. Triangle ABC is graphed on the set of axes below.

Which transformation maps $\triangle ABC$ onto itself?

- 1) Reflection over the x-axis
- 2) Reflection over x = 2

Reflection over y = 2

4) Reflection over x = -2

20. Which transformation does not map the circle in the diagram below onto itself?

- 2) Reflection over the line x = -3
- 3) Rotation of 90 centered at (-3, -4)
- 4) Reflection over the line v = -4

21. A regular octagon is rotated n degrees about its center, carrying the octagon onto itself. The value of n could be

- 1) 10°
- 2) 150°

- @ 225°45(5) 4) 252°

22. Which of the following rotations would not map a regular pentagon onto itself?

- (1) 14472(2) (3) 216 72(3)
- (4) 720 72661

Spiral Review

Complex Triangle Problems:

- 1) The three angles of a triangle add to equal 180°. Look for triangles.
- 2) Linear pairs add to 180°. Look for linear pairs.
- 3) Isosceles triangle has congruent angles opposite congruent sides (given congruent sides).
- 4) Equilateral triangle has angles 60, 60, 60 (given equilateral triangle).
- 5) An angle bisector cuts an angle into two congruent halves (given bisected angles).
- 6) Use parallel lines cut by a transversal (extend and follow the transversal, fill in 8 angles.)

23. In the diagram below of $\triangle ACD$, B is a point on AC such that $\triangle ADB$ is an equilateral triangle, and $\triangle DBC$ is an isosceles triangle with $\overline{DB} \cong \overline{BC}$. Find m $\angle C$.

- Which value of x makes $\overline{AB} \cong \overline{CB}$?

 1) 59°
- 2) 62°