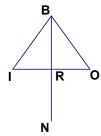
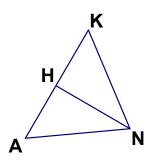

Name		
Mr. Schl	anskv	

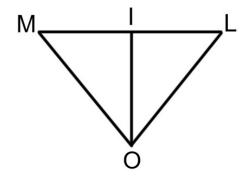
Date	
Geometry	
	(:


Triangle Proofs Review Sheet

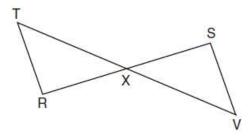
- 1. Segment AB is the perpendicular bisector of \overline{CD} at point M. Which statement is always true?
- 1) $\overline{CB} \cong \overline{DB}$
- 2) $\overline{CD} \cong \overline{AB}$
- 3) $\triangle ACD \cong \triangle BCD$
- 4) $\triangle ACM \cong \triangle BCM$
- 2. In triangle MAH below, \overline{MT} is the perpendicular bisector of \overline{AH} . Which statement is *not* always true?
- 1) $\triangle MAH$ is isosceles. 2) $\triangle MAT$ is isosceles. 3) \overline{MT} bisects $\angle AMH$. 4) $\angle A$ and $\angle TMH$ are complementary.



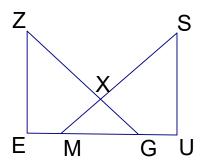
3. Given: \overline{NB} bisects \angle IBO, $\overline{BR} \perp \overline{IO}$


Prove: ∠ BIO≅ ∠ BOI

Given: $\overline{HN} \perp \overline{KA}$, $\overline{KN} \cong \overline{AN}$ 4. Prove: $\angle HAN \cong \angle HKN$

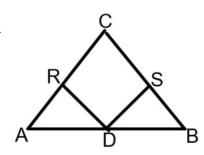


5. Given: \overline{OI} is the perpendicular bisector of \overline{ML} Prove: ΔMLO is isosceles



 \overline{RS} and \overline{TV} bisect each other at point X \overline{TR} and \overline{SV} are drawn 6. Given:

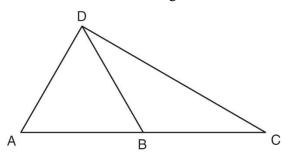
Prove: $\overline{TR} \parallel \overline{SV}$



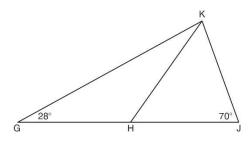
Given: $\overline{ZE} \perp \overline{EU}$, $\overline{SU} \perp \overline{EU}$, $\overline{ZE} \cong \overline{SU}$, $\overline{EM} \cong \overline{GU}$ 7. Prove: $\angle Z \cong \angle S$

8. Given: In $\triangle ABC$, $\overline{CA} \cong \overline{CB}$, $\overline{AR} \cong \overline{BS}$, $\overline{DR} \perp \overline{AC}$, and $\overline{DS} \perp \overline{BC}$

Prove: $\overline{DR} \cong \overline{DS}$



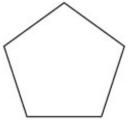
Spiral Review


Complex Triangle Problems:

- 1) The three angles of a triangle add to equal 180°. Look for triangles.
- 2) Linear pairs add to 180°. Look for linear pairs.
- 3) Isosceles triangle has congruent angles opposite congruent sides (given congruent sides).
- 4) Equilateral triangle has angles 60, 60, 60 (given equilateral triangle).
- 5) An angle bisector cuts an angle into two congruent halves (given bisected angles).
- 6) Use parallel lines cut by a transversal (extend and follow the transversal, fill in 8 angles.)

9. In the diagram below of $\triangle ACD$, B is a point on \overline{AC} such that $\triangle ADB$ is an equilateral triangle, and $\triangle DBC$ is an isosceles triangle with $\overline{DB} \cong \overline{BC}$. Find $m\angle C$.

10. In the diagram below of $\triangle GJK$, H is a point on \overline{GJ} , $\overline{HJ} \cong \overline{JK}$, $\mathbb{m}\angle G = 28$, and $\mathbb{m}\angle GJK = 70$. Determine whether $\triangle GHK$ is an isosceles triangle and justify your answer.



Rotating Regular Polygons onto Themselves

- 1) The minimum rotation is $\frac{360}{n}$.
- 2) Any multiple of that will also map the regular polygon onto itself!
- 11. The regular polygon below is rotated about its center. Which angle of rotation will carry the figure onto itself?

- 2) 108°
- 3) 216°
- 4) 540°

- 12. Which of the following rotations would not map an equilateral triangle onto itself?
- $(1) 120^{\circ}$
- $(3)\ 180^{\circ}$
- $(2) 240^{\circ}$
- (4) 480°

Triangle Inequality Theorem

The two smallest sides of a triangle must add to be greater than the third side

- 13. Which of the following cannot make up the three sides of a triangle?
- 1) {3,5,4}
- 3) {9,7,5}
- 2) {2,2,3}
- 4) {6,1,4}
- 14. Which of the following can make up the three sides of a triangle?
- 1) {2,4,2}
- 3) {8,1,6}
- 2) {1,7,4}
- 4) {5,5,7}